Mengkun She https://serenitysmk.github.io

EDUCATION	
• Christian-Albrechts-Universität zu Kiel Ph.D. in Computer Science	Kiel, Germany Nov 2020 – Present
 • Topic: Underwater Refractive Camera Calibration and 3D Scene Reconstruction • Advisor & Reference: Prof. DrIng. Kevin Köser 	1NOV 2020 – Fresent
• Chongqing University Master of Science in Surveying and Mapping Engineering (Geo-informatics)	Chongqing, China Sep 2017 – June 2020
• Chongqing University Bachelor of Surveying and Mapping Engineering (Geo-informatics)	Chongqing, China Sep 2013 – June 2017
Experience	
• Christian-Albrechts-Universität zu Kiel Computer Vision Research Assistant at Marine Data Science Group (MDS)	Kiel, Germany July 2023 – Present
• Open-Source C++ Underwater Mapping Software : Integrate the refractive came SfM into the popular C++ based open-source 3D reconstruction software COLMAP. (pr gitlab:colmap-underwater)	
• Underwater Neural Radiance Field : Learning a medium- and light-independent scee modeling the camera-attached co-moving light source with spatial- and surface normal-d (paper: [1]).	- •
• Tiny- and Semi-transparent Object Reconstruction : Learning a volumetric representing semi-transparent objects using differentiable rendering and neural radiance field (paper:	•
• Teaching Assistant - Probabilistic Robotics (Winter 2023) : Responsible for the final exam.	tutorial sessions and the
• Helmholtz Centre for Ocean Research, Kiel, GEOMAR Computer Vision Research Assistant at Oceanic Machine Vision Group (OMV)	Kiel, Germany Nov 2020 – June 2023
• Refractive Camera Models and Calibration : Derive and implement novel camera a camera systems to account for geometric distortion induced by refraction (paper [5, 7]).	models for underwater
• Refractive Image-based 3D Reconstruction : Research and develop a refractive str approach for image-based 3D reconstruction from underwater imagery (paper [2]).	
• Sensor Fusion with Navigation: Develop a loosely-coupled visual-navigation fusion s large-scale of seafloor (paper: [3]).	strategy for mapping a
• Macro-lens Camera Calibration: Derive a novel affine transform camera model for t develop a C++ based calibration approach for macro-lens camera system (paper: [6]).	he focus-stacked image and
• Helmholtz Centre for Ocean Research, Kiel, GEOMAR Internship & Master Thesis	Kiel, Germany Jan 2019 – Jan 2020
• BubbleBox Project : Develop a synchronized high-speed (80 Hz) machine vision stered C++ based software to measure and quantify the volumes of released gas bubbles using stereo vision techniques.	
• Computer Vision Freelancer Working as a freelancer to offer small-to-medium size computer vision services and solutions	Kiel, Germany 2021 – 2024
• Localizing Robot Arm End Effector : Develop a synchronized 4-camera system to the effector of a robot arm in 3D using AruCo maker.	rack and localize the end
• Intrinsic & Extrinsic Calibration of a Camera Array: Develop a calibration meth and relative extrinsic parameters of a 26-cameras camera array for medical human-body	

Skills

- Skill Set: Camera Calibration; 3D Reconstruction; SfM / SLAM; Estimation and Optimization; Representation Learning;
- Programming & Tools: C++, CMake, Python, PyTorch, OpenCV, Ceres-Solver, Linux, Git, ROS (basic), LaTex
- Scientific Skills: Problem Solving; Modeling; Scientific Drawing and Writing.
- Communication: English (proficient); German (A2); Chinese (native)

Certificate

- Algorithmic Toolbox: Issued by Coursera, credential ID: PX5W3GZW8QLW
- Neural Networks and Deep Learning: Issued by Coursera, credential ID: 6ML6ZBMNEXXU
- Improving Deep Neural Networks: Issued by Coursera, credential ID: JVRXWMCD4LHH

Awards & Scholarship

- Ph.D. Scholarship: Doctoral scholarship granted by China Scholarship Council (CSC, 2020 2024)
- Travel Grant: Travel grant for young researchers by Deutsche Arbeitsgemeinschaft für Mustererkennung, DAGM 2019

Selected Publications

18 publications listed on Google Scholar, with a total of 199 citations and an H-index of 8. Below are selected publications:

- [1]: M. She, F. Seegräber, D. Nakath, P. Schöntag, K. Köser. Relative Illumination Fields: Learning Medium and Light Independent Underwater Scenes. (Submitted to *CVPR*, 2025)
- [2]: M. She, F. Seegräber, D. Nakath, K. Köser. Refractive COLMAP: Refractive Structure-from-Motion Revisited. In *IROS*, 2024 (Oral)
- [3]: M. She, Y. Song, D. Nakath, K. Köser. Semihierarchical Reconstruction and Weak-area Revisiting for Robotic Visual Seafloor Mapping. In *Journal of Field Robotics*
- [4]: M. She, T. Weiß, Y. Song, P. Urban, J. Greinert, K. Köser. Marine Bubble Flow Quantification Using Wide-baseline Stereo Photogrammetry. In *ISPRS Photogrammetry and Remote Sensing*
- [5]: M. She, D. Nakath, Y.Song, K. Köser. Refractive Geometry on Underwater Domes. In *ISPRS Photogrammetry and Remote Sensing*
- [6]: X. Weng^{*}, M. She^{*}, D. Nakath, K. Köser (**Equal Contribution*). Macal Macro Lens Calibration and the Focus Stack Camera Model. In *3DV*, 2021 (Oral)
- [7]: M. She, Y. Song, J Mohrmann, K. Köser. Adjustment and Calibration of Dome Port Camera Systems for Underwater Vision. In *GCPR*, 2019 (Oral)
- [8]: D. Nakath, X. Weng, M. She, K. Köser. Visual Tomography: Physically Faithful Volumetric Models of Partially Translucent Objects. In 3DV, 2024